Symmetric schemes for computing the minimum eigenvalue of a symmetric Toeplitz matrix

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Schemes for Computing the Minimum Eigenvalue of a Symmetric Toeplitz Matrix

In 8] and 9] W. Mackens and the present author presented two generalizations of a method of Cybenko and Van Loan 4] for computing the smallest eigenvalue of a symmetric, positive deenite Toeplitz matrix. Taking advantage of the symmetry or skew symmetry of the corresponding eigenvector both methods are improved considerably.

متن کامل

Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix

In this note we discuss a method of order 1 + √ 3 for computing the smallest eigenvalue λ1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in [7] which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yiel...

متن کامل

A Projection Method for Computing the Minimum Eigenvalue of a Symmetric Positive De nite Toeplitz Matrix

A projection method for computing the minimal eigenvalue of a symmetric and positive deenite Toeplitz matrix is presented. It generalizes and accelerates the algorithm considered in 12]. Global and cubic convergence is proved. Randomly generated test problems up to dimension 1024 demonstrate the methods good global behaviour.

متن کامل

Preconditioned Lanczos Methods for the Minimum Eigenvalue of a Symmetric Positive Definite Toeplitz Matrix

In this paper, we apply the preconditioned Lanczos (PL) method to compute the minimum eigenvalue of a symmetric positive definite Toeplitz matrix. The sine transform-based preconditioner is used to speed up the convergence rate of the PL method. The resulting method involves only Toeplitz and sine transform matrix-vector multiplications and hence can be computed efficiently by fast transform al...

متن کامل

A fast algorithm for computing the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix

Recent progress in signal processing and estimation has generated considerable interest in the problem of computing the smallest eigenvalue of a symmetric positive definite Toeplitz matrix. Several algorithms have been proposed in the literature. Many of them compute the smallest eigenvalue in an iterative fashion, relying on the Levinson–Durbin solution of sequences of Yule–Walker systems. Exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1999

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(98)10147-7